domingo, 10 de febrero de 2013

Tarea #1 VIsión Computacional - Python, Convolución discreta


Que tal para esta entrada se nos encargo hacer lo siguiente:

Objetivo
1) subrutina para aplicar una máscara de convolución discreta, de preferencia centralizado al pixel en cuestión;
2) con esa subrutina, calcular por lo menos un gradiente horizontal y un gradiente vertical, posiblemente más o también diagonales, con la posibilidad de combinarlos al tiempo de calcularlos a uno solo o combinando entre múltiples matrices de gradiente una vez terminada la aplicación de todas las máscaras de gradiente:
a) normalización de la matriz resultante de la manera que perciben factible y útil a [0, 255];
b) binarización que deje los bordes como zonas blancas y el resto negro


Antes de empezar
Si están en blanco de que se tiene que hacer (como nosotros al principio) les recomiendo entrar a las siguientes ligas y se refresquen un rato, están muy bien explicadas.
http://docs.gimp.org/es/plug-in-convmatrix.html (español)
http://www.songho.ca/dsp/convolution/convolution2d_example.html (ingles)

El código completo esta disponible en mi git.


Explicación
Ahora supondremos que ya saben lo que se tiene que hacer, así que continuemos.

Lo primero que tenemos que hacer es sacar TODOS los vecinos del PIXEL ACTUAL, yo hice 2 rutinas, una para sacar los vecinos en forma de cruz(arriba, izquierda, derecha, abajo) y la otra para los vecinos en diagonales(izqArriba, derArriba, izqAbajo, derAbajo).


Cada vecino esta en un bloque TRY-EXCEPT, esto para capturar el error(asignar el vecino(pixel) a cero) y el programa no termine.

Como podemos ver, cada rutina regresa 4 valores. Ahora lo que sigue es juntar esas variables(yo lo hice en forma de lista) y después ordenarlas para que queden de la siguiente forma:

Imagen 1

Les muestro el pedazo de código en donde lo hago:

Ahora que ya tenemos la matriz de la forma "imagen 1", es fácil multiplicar por cualquier mascara de 3x3. Por que ambas matices(los vecinos ordenados y la mascara) tienen la misma cantidad de elementos y se encuentran CENTRALIZADO, a que me refiero con "CENTRALIZADO": que el PIXEL ACTUAL se encuentra en el centro de la matriz.

Ahora sigue lo interesante.... la multiplicación de matrices, normalización y binarización.

Como yo lo hice... 
Aclaración: Yo para no batallar tanto, en vez de trabajar con matrices trabaje con listas... digamos que es un amor suicida.

La convolución a grandes rasgos es una suma de las multiplicaciónes de la "matriz X" mas las sumas de cada multiplicación de la "matriz Y". Un poco mas técnico:

Donde
F  = es la nueva imagen
f = imagen original
x = pixel en el eje x de la imagen original
y = pixel en el eje y de la imagen original
g/h = mascara
i = pixel en el eje x de la mascara
j = pixel en el eje y de la mascara


Aquí el pedazo de código en donde lo hago...

Este es la función para normalizar y binarizar.
Donde:
MINN  = (int) = El mínimo pixel localizado hasta el momento
MAXN = (int) = El máximo pixel localizado hasta el momento
RANGO_BINARIZACION = (int) Dato de entrada entre [0- 255]

El programa y sus parámetros
 PARÁMETROS DE ENTRADA                            
argv[1] = (string)nombre de la imagen a procesar  
argv[2] = (int)Rango mínimo - para el umbral      
argv[3] = (int)Rango máximo - para el umbral    
argv[4] = (string) mascara a usar (sobel || prewiit)
argv[5] = (int)Rango para binarizacion            


Todos cuentan con bloque try-except por si los llego a olvidar.


Resultados 


imagen original


Con mascara SOBEL - [DIMENCIONES] 1160 x 547

Convolución con mascara SOBEL


Normalizacion - SOBEL

y sus tiempos:
Umbral este en "0.0" porque para esta prueba fue desactivada


Con mascara PREWIIT - [DIMENCIONES] 1160 x 547


Convolución con mascara prewiit
Normalización - PREWIIT
y sus tiempos



 Binarización
Binarizacion con rango 30

Binarizacion con rango 150


Comentarios
No me gustaron los resultados tal vez aplicando otra formula para normalización saldrían los bordes mas claros... y por lógica la normalización se observaría con bordes mas precisos :|

Otro camino: http://es.wikipedia.org/wiki/Operador_Sobel



REFERENCIAS: 
http://elisa.dyndns-web.com/~elisa/teaching/comp/vision/bordes.pdf
y las ligas al principio de la entrada.